Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal.
نویسندگان
چکیده
The manipulation of a Gaussian laser beam using conical diffraction in a high optical quality biaxial crystal of KGd(WO(4))(2) has been examined in detail with emphasis on the experimental techniques involved and intuitive explanations of the notable features. Two different optical arrangements were used to form the Pogendorff double-ring light pattern in the focal image plane. The formation of both diverging and non-diverging zeroth and first order Bessel beams was investigated. The various intensity distributions and polarization properties were measured and compared with the predictions of well-established theory.
منابع مشابه
Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction.
When a left-circularly polarised Gaussian light beam, which has spin angular momentum (SAM) J(sp) = sigmah = 1h per photon, is incident along one of the optic axes of a slab of biaxial crystal it undergoes internal conical diffraction and propagates as a hollow cone of light in the crystal. The emergent beam is a superposition of equal amplitude zero and first order Bessel like beams. The zero ...
متن کاملConical diffraction illumination opens the way for low phototoxicity super-resolution imaging
We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon, taking place when a laser beam is diffracted through a biaxial crystal. We use conical diffraction in a thin biaxial crystal to generate illumination patterns that are more compact than the classical Gaussian beam, and use them to generate a ...
متن کاملOrbital and spin angular momentum in conical diffraction
Abstract The angular momentum Jinc of a light beam can be changed by passage through a slab of crystal. When the beam is incident along the optic axis of a biaxial crystal, which may also possess optical activity (chirality), the final angular momentum J can have both orbital (Jorb) and spin (Jsp) contributions, which we calculate paraxially exactly for arbitrary biaxiality and chirality and in...
متن کاملConical diffraction of linearly polarised light controls the angular position of a microscopic object.
Conical diffraction of linearly polarised light in a biaxial crystal produces a beam with a crescent-shaped intensity profile. Rotation of the plane of polarisation produces the unique effect of spatially moving the crescent-shaped beam around a ring. We use this effect to trap microspheres and white blood cells and to position them at any angular position on the ring. Continuous motion around ...
متن کاملConical diffraction: observations and theory
Conical refraction was produced by a transparent biaxial crystal of KGd(WO4)2 illuminated by a laser beam. The ring patterns at different distances from the crystal were magnified and projected onto a screen, giving rings whose diameter was 265 mm. Comparison with theory revealed all predicted geometrical and diffraction features: close to the crystal, there are two bright rings of internal con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 17 15 شماره
صفحات -
تاریخ انتشار 2009